A Kalman Filter-Based Method to Generate Continuous Time Series of Medium-Resolution NDVI Images
نویسندگان
چکیده
A data assimilation method to produce complete temporal sequences of synthetic medium-resolution images is presented. The method implements a Kalman filter recursive algorithm that integrates medium and moderate resolution imagery. To demonstrate the approach, time series of 30-m spatial resolution NDVI images at 16-day time steps were generated using Landsat NDVI images and MODIS NDVI products at four sites with different ecosystems and land cover-land use dynamics. The results show that the time series of synthetic NDVI images captured seasonal land surface dynamics and maintained the spatial structure of the landscape at higher spatial resolution. The time series of synthetic medium-resolution NDVI images were validated within a Monte Carlo simulation framework. Normalized residuals decreased as the number of available observations increased, ranging from 0.2 to below 0.1. Residuals were also significantly lower for time series of synthetic NDVI images generated at combined recursion (smoothing) than individually at forward and backward recursions (filtering). Conversely, the uncertainties of the synthetic images also decreased when the number of available observations increased and combined recursions were implemented. OPEN ACCESS Remote Sens. 2014, 6 12382
منابع مشابه
Construction of smooth daily remote sensing time series data: a higher spatiotemporal resolution perspective
Research in time-series remote sensing data is receiving increasing attention. With the availability of relatively short repeat cycle and high spatial resolution satellite data, the construction and application of high spatiotemporal remote sensing time-series data is promising. In this paper, we proposed a method to construct complete spatial time series data, with Savitzky-Golay filter for sm...
متن کاملNon-destructive Method for Estimating Biomass of Plants Using Digital Camera Images
Abstract Plant growth and biomass assessments are required in production and research. Such assessments are followed by major decisions (e.g., harvest timing) that channel resources and influence outcomes. In research, resources required to assess crop status affect other aspects of experimentation and, therefore, discovery. Destructive harvests are important because they influence treatment s...
متن کاملIMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY
Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...
متن کاملImproving Ndvi Time Series Class Separation Using an Extended Kalman
It is proposed that the NDVI time series derived from MODIS multitemporal remote sensing data can be modelled as a triply (mean, phase and amplitude) modulated cosine function. A non-linear Extended Kalman Filter was developed to estimate the parameters of the modulated cosine function as a function of time. It was shown that the maximum separability of the parameters for different vegetation l...
متن کاملRecovering Method of Missing Data Based on Proposed Modified Kalman Filter When Time Series of Mean Data is Known
Recovering method of missing data based on the proposed modified Kalman filter for the case that the time series of mean data is know is proposed. There are some cases of which although a portion of data is missing, mean value of the time series of data is known. For instance, although coarse resolution of imagery data are acquired every day, fine resolution of imagery data are missing sometime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014